Modelling suicide and unemployment: a longitudinal analysis covering 63 countries, 2000–11

Carlos Nordt, Ingeborg Warnke, Erich Seifritz, Wolfram Kawohl

Summary

Background As with previous economic downturns, there has been debate about an association between the 2008 economic crisis, rising unemployment, and suicide. Unemployment directly affects individuals’ health and, unsurprisingly, studies have proposed an association between unemployment and suicide. However, a statistical model examining the relationship between unemployment and suicide by considering specific time trends among age-sex-country subgroups over wider world regions is still lacking. We aimed to enhance knowledge of the specific effect of unemployment on suicide by analysing global public data classified according to world regions.

Methods We retrospectively analysed public data for suicide, population, and economy from the WHO mortality database and the International Monetary Fund’s world economic outlook database from 2000 to 2011. We selected 63 countries based on sample size and completeness of the respective data and extracted the information about four age groups and sex. To check stability of findings, we conducted an overall random coefficient model including all study countries and four additional models, each covering a different world region.

Findings Despite differences in the four world regions, the overall model, adjusted for the unemployment rate, showed that the annual relative risk of suicide decreased by 1·1% (95% CI 0·8–1·4) per year between 2000 and 2011. The best and most stable final model indicated that a higher suicide rate preceded a rise in unemployment (lagged by 6 months) and that the effect was non-linear with higher effects for lower baseline unemployment rates. In all world regions, the relative risk of suicide associated with unemployment was elevated by about 20–30% (lagged by 6 months) and that the effect was non-linear with higher effects for lower baseline unemployment rates. Overall, 41 148 (95% CI 39 552–42 744) suicides were associated with unemployment in 2007 and 46 131 (44 292–47 970) in 2009, indicating 4983 excess suicides since the economic crisis in 2008.

Interpretation Suicides associated with unemployment totalled a nine-fold higher number of deaths than excess suicides attributed to the most recent economic crisis. Prevention strategies focused on the unemployed and on employment and its conditions are necessary not only in difficult times but also in times of stable economy.

Funding University of Zurich.

Introduction Almost 1 million people around the world die by suicide every year, constituting 2% of the global burden by the year 2020.1 Because suicide is partly preventable (eg, by changes in physicians’ education or by restricting access to lethal methods),2 several countries have adopted appropriate prevention strategies.3,4

As in earlier economic downturns,5–8 the 2008 world economic crisis led to the re-emergence of the debate on the effect of the economy on suicide. Recessions, that is, decreases in the gross domestic product (GDP) over subsequent quarters, exhibit strong reductions in macroeconomic aggregates such as consumption, investment, industrial production, employment, exports, and imports.9 Accordingly, the 2008 economic crisis saw a 2% decline in world per capita GDP in 2009,9 and worldwide 31–8 million more people were unemployed in 2013 than in 2007.10 Whereas evidence suggests that all-cause mortality declines during recession, suicide does not.11 In line with evidence on former crises, current data from Europe,11,12 the USA,13,14 and Asia15 suggest an association between the 2008 economic crisis, rising unemployment rates, and increased rates of death by suicide. Men and those of working age seem to be particularly affected.12,13,14,16 The association between unemployment and poor health17 or suicide probably emerges from its direct effects on the individual via mechanisms such as increased probability of depressive illness, financial strain, decreased affordability of mental health care, or disruption of present treatment regimes.21 Accordingly, governmental interventions to keep and reintegrate people in jobs might be a promising solution.9 However, the significance of the effect of unemployment on suicide has not been clearly shown.22 This absence of demonstration could be because of variability in research design or differing statistical models. Some studies have linked excess suicides to rising unemployment during the economic crisis by applying only a time indicator of 2007–09,13,16 although these studies considered linear long-term trends in the suicide rates. Previous evidence supports a time lag between the development of the economy and suicide related to awareness of job insecurity among other factors.23,24 Moreover, there are hints of a non-linear relationship between unemployment and suicide, and...
Suicide and population data

In this longitudinal analysis, as was done in a recent study,\(^1\) we extracted data for annual sex-specific and age-specific suicide rates from the WHO mortality database. We then used International Classification of Diseases (ICD) codes (9th and 10th version) to extract suicide data (E950–E959 and X60–X84), selecting all countries with a mean number of more than 20 male suicides per year and covering at least the years 2004–09. Only Cuba had to be excluded, because it showed suicide data but no economic information. We replaced missing population data in the WHO mortality database with information from the UN population database. If population data were missing in both databases (which only concerned population data for 2011, for which 184 of 504 datapoints were not yet available), we replaced missing data within the age group and sex group of the respective country by linear extrapolation.

The 63 countries selected were split into four world geographic regions according to UN classifications: Americas (Argentina, Brazil, Canada, Chile, Colombia, Costa Rica, Ecuador, El Salvador, Mexico, Nicaragua, Panama, Paraguay, Suriname, Uruguay, the USA; N=15, roughly 92% of the total population in this world region); northern and western Europe (Austria, Belgium, Denmark, Estonia, Finland, France, Germany, Ireland, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Sweden, Switzerland, the UK; N=16; roughly 99% of the total population); southern and eastern Europe (Bulgaria, Croatia, Czech Republic, Greece, Hungary, Italy, Macedonia, Moldova, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, and Ukraine; N=18; roughly 98% of the total population); non-Americas and non-Europe (Australia, Egypt, Georgia, Hong Kong, Israel, Japan, Kazakhstan, Kuwait, Kyrgyzstan, Mauritius, New Zealand, Singapore, South Africa, South Korea; N=14; 25% of the whole population, 12% of the population of Africa, 54% of Asia, and 72% of Oceania).

Methods

Suicide and population data

In this longitudinal analysis, as was done in a recent study,\(^1\) we extracted data for annual sex-specific and age-specific suicide rates from the WHO mortality database. We then used International Classification of Diseases (ICD) codes (9th and 10th version) to extract suicide data (E950–E959 and X60–X84), selecting all countries with a mean number of more than 20 male suicides per year and covering at least the years 2004–09. Only Cuba had to be excluded, because it showed suicide data but no economic information. We replaced missing population data in the WHO mortality database with information from the UN population database. If population data were missing in both databases (which only concerned population data for 2011, for which 184 of 504 datapoints were not yet available), we replaced missing data within the age group and sex group of the respective country by linear extrapolation.

The 63 countries selected were split into four world geographic regions according to UN classifications: Americas (Argentina, Brazil, Canada, Chile, Colombia, Costa Rica, Ecuador, El Salvador, Mexico, Nicaragua, Panama, Paraguay, Suriname, Uruguay, the USA; N=15, roughly 92% of the total population in this world region); northern and western Europe (Austria, Belgium, Denmark, Estonia, Finland, France, Germany, Ireland, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Sweden, Switzerland, the UK; N=16; roughly 99% of the total population); southern and eastern Europe (Bulgaria, Croatia, Czech Republic, Greece, Hungary, Italy, Macedonia, Moldova, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, and Ukraine; N=18; roughly 98% of the total population); non-Americas and non-Europe (Australia, Egypt, Georgia, Hong Kong, Israel, Japan, Kazakhstan, Kuwait, Kyrgyzstan, Mauritius, New Zealand, Singapore, South Africa, South Korea; N=14; 25% of the whole population, 12% of the population of Africa, 54% of Asia, and 72% of Oceania).

Similar to Chang and colleagues,\(^1\) we considered the number of suicides per 100 000 population (suicide rate) for the following four age categories by sex: 15–24 years, 25–44 years (reference category), 45–64 years, and 65 years and older.
Economic data
From the International Monetary Fund’s world economic outlook database, we extracted four economic indicators: the unemployment rate gives the percentage of unemployed people to the total labour force; the GDP based on purchasing-power-parity per capita is expressed in current international dollars; the growth rate describes year-on-year changes of annual percentages of constant price GDP; and inflation means year-on-year changes of the annual percentages of average consumer prices. The unemployment rate for Suriname was missing in 2011 and was taken from the corresponding public website.

Statistical analysis
We analysed the annual number of suicides per 100000 population in the 504 different age-specific and sex-specific groups, each with up to twelve timepoints. We applied a random coefficient model for non-Gaussian longitudinal data with a negative binomial distribution to account for overdispersion, using the procedure NLMIXED in SAS version 9.4 with log as link function. In order to enhance estimation of the model and interpretation of the effects, and also used as a non-linear predictor variable (logarithmised). We examined the model fit and model comparison with Bayesian information criterion (BIC) and checked the stability of the estimated effects of economic variables analysed were inflation, growth rate, and GDP per capita. GDP per capita was divided by 1000 to enhance estimation of the model and interpretation of the effects.

Table 2: Final model relative risks (RR) of suicides in four world regions and overall (non-linear, by 6 month time-lagged unemployment rate)

<table>
<thead>
<tr>
<th>Unemployment rate, examples (%)</th>
<th>Americas</th>
<th>Northern and western Europe</th>
<th>Southern and eastern Europe</th>
<th>Non-Americas and non-Europe</th>
<th>Overall (all study countries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (ref: men)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>0·215 (0·174–0·265)</td>
<td>0·287 (0·247–0·332)</td>
<td>0·208 (0·169–0·257)</td>
<td>0·347 (0·190–0·634)</td>
<td>0·251 (0·212–0·297)</td>
</tr>
<tr>
<td>Time</td>
<td>1·007 (1·001–1·014)</td>
<td>0·976 (0·973–0·979)</td>
<td>0·977 (0·973–0·981)</td>
<td>1·003 (0·995–1·011)</td>
<td>0·989 (0·986–0·992)</td>
</tr>
<tr>
<td>Age, years (ref: 25–44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–24</td>
<td>1·145 (0·853–1·535)</td>
<td>0·643 (0·520–0·796)</td>
<td>0·571 (0·425–0·766)</td>
<td>0·808 (0·345–1·891)</td>
<td>0·750 (0·591–0·952)</td>
</tr>
<tr>
<td>45–64</td>
<td>0·981 (0·731–1·316)</td>
<td>1·516 (1·226–1·873)</td>
<td>1·701 (1·270–2·277)</td>
<td>0·951 (0·407–2·219)</td>
<td>1·266 (0·999–1·605)</td>
</tr>
<tr>
<td>≥65</td>
<td>0·941 (0·698–1·269)</td>
<td>1·449 (1·176–1·786)</td>
<td>2·172 (1·627–2·901)</td>
<td>1·033 (0·440–2·426)</td>
<td>1·338 (1·055–1·697)</td>
</tr>
</tbody>
</table>

Data are RR (95% CI). RR values are transformed (exponentiated) values of the model estimates presented in table 1. Because the unemployment rate is a non-linear predictor in the model, we present RR examples for different unemployment rates between 3-15%.

Visual inspection of the data pointed to a time lag of a few months between unemployment rate and suicide rate shifted forward. Because of the available annual data, we applied a 6 month time lag by calculating the mean of the unemployment rate in a current year and in the following year. To find an approximation of the time lag and possible non-linearity, we considered six variants of the unemployment rate: 1) linear; 2) linear, time lagged by 6 months; 3) linear, time lagged by 1 year; 4) non-linear (logarithmised); 5) non-linear, time lagged by 6 months; and 6) non-linear, time lagged by 1 year. Other economic factors analysed were inflation, growth rate, and GDP per capita. GDP per capita was divided by 1000 to enhance estimation of the model and interpretation of effects, and also used as a non-linear predictor variable (logarithmised). We examined the model fit and model comparison with Bayesian information criterion (BIC) and checked the stability of the estimated effects of economic variables over world regions. We assumed a probable association between unemployment rate and suicide.
suicide rate to be similar in different world regions as long as potential non-linearity is accounted for.

Estimates of the final statistical model (table 1) were transformed (exponentiated) into relative risks (table 2, figure 1), and suicide rates and numbers (figure 2, table 3). 95% CIs shown in figure 2 and table 3 are based on predictions of the procedure NLMIXED applying the \(\Delta\) method.

---

**Role of the funding source**

The sponsors of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

**Results**

Of the four economic variables examined, the non-linear, 6 month time-lagged unemployment rate (table 1) led to the best model fit, while showing comparable estimates between world regions (appendix pp 1–15). Specifically, we noted higher effects for lower baseline unemployment rates, and an increase in the suicide rate preceding the increase in the unemployment rate by 6 months. Interaction effects with unemployment (appendix p 11) did not improve the model fit compared with the final model (table 1; appendix p 15) in any of the four world regions.

In total, preliminary models of other economic variables led to a poorer model fit and less stable results. The inflation rate did not improve the model fit in any of the four world regions. Although the effect of the growth rate was significant in all regions except in the Americas, the estimated effect sizes of the growth rate were generally small. The GDP as a linear or non-linear predictor led to a better model fit in three world regions, but not in the non-Americas and non-Europe. Further, GDP led to unstable and inconsistent findings when considered together with the unemployment rate. Because GDP also showed very strong correlations with calendar year (\(r\approx0.96\) within countries between 2000 and 2011; appendix p 16), we finally excluded GDP from statistical analysis because of multicollinearity.

According to our final statistical models, the relative risk of suicide associated with unemployment was elevated by 20–30% in all world regions between 2000 and 2011 (figure 1). After the 2008 economic crisis, the unemployment rate increased most strongly in southern and eastern Europe. In general, the data shows that the unemployment rate decreased before the crisis in all world regions and after the crisis reached a level roughly similar level to that of 2005. However, northern and western Europe had higher unemployment rates after 2009 than in 2008 or before. By contrast to southern and eastern Europe, the unemployment rate decreased in other world regions after a previous short-term increase. The unemployment rates among the world regions differed more than the relative risk of suicides associated with unemployment between 2000 and 2011, reflecting non-linearity.

An increase from 3% to 6% in the unemployment rate corresponds to a rise in the relative risk of suicide from 1.158 (95% CI 1.125–1.193) to 1.229 (1.179–1.282; table 2). This corresponds to a 6–13% increase in the suicide rate (1.229/1.158–1; appendix p 1). If the unemployment rate were to rise from 12% to 15%, the
relative risk of suicide associated with unemployment would change from 1.313 (95% CI 1.243–1.387) to 1.342 (1.265–1.424). Here, the suicide rate increases only by 2.2% (1.342/1.313–1), and, therefore, less than the change in the unemployment rate. In these examples, the rise in the suicide rate is based on the assumption that no other time trends in the relative risk of suicide are present.

The final overall model estimated a total of about 233,000 suicides each year and suicides associated with unemployment of about 45,000, meaning an 20% of all suicides (table 3). Suicides associated with unemployment made up 41,148 (95% CI 39,552–42,744) in 2007 and 46,131 (44,292–47,970) in 2009, indicating an increase of 4983 compared with the precrisis year. Over all study countries, the suicide rate associated with unemployment per 100,000 population decreased from 3.53 (95% CI 3.36–3.69) in 2000, to 20.75 (2.65–2.86) in 2007, increased to 2.82 (2.71–2.94) in 2011 (table 3).

Besides similar effects of unemployment, only the effect of sex was comparable among the four world regions. Women had a four-fold lower relative risk of suicide than men (overall model 0.251 [95% CI 0.212–0.297]; table 2). Men had the highest suicide rates (95% CI 0·1–1·4) per year, whereas in the non-Americas and non-Europe it remained stable (table 2). In northern and western Europe, the relative risk of suicide decreased by 2·4% (95% CI 2·1–2·7) per year and in southern and eastern Europe by 2·3% (1·9–2·7) per year between 2000 and 2011. The different time trends for each world region were also visible for sex (figure 2).

Finally, age groups only differed significantly in Europe, but not in the Americas and non-Americas and non-Europe (table 2). The relative risk of suicide in Europe was increased among older age groups (reference group: 25–44 years; northern and western Europe, 45–64 years: 1·516 [95% CI 1·226–1·877]; northern and western Europe, ≥65 years: 1·701 [1·447–2·077]; southern and eastern Europe, 45–64 years: 1·701 [1·270–2·277]; southern and eastern Europe, ≥65 years: 2·172 [1·627–2·901]). Those individuals aged between 15 and 24 years had a reduced relative risk of suicide (northern and western Europe: 0·643 [95% CI 0·520–0·796]; southern and eastern Europe: 0·571 [0·425–0·766]).

Discussion

We have shown that it is feasible to directly estimate the effect of non-linear and time-lagged unemployment rates on suicide rates in 63 countries while accounting for age and sex including specific time trends among subgroups. Of the economic variables tested, only unemployment is associated with similar effects in each of the four world regions. We noted that unemployment was related to an increased relative risk of suicide by 20–30% in all four world regions. Suicides associated with unemployment contributed 41,148 in 2007 and 46,131 in 2009, meaning an increase of 4983 compared with the pre-crisis year. In the four world regions, a changing unemployment rate affected both sexes as well as different age groups equally.

Generally, our results correspond with previous research indicating that a rise in unemployment is linked with an increase in suicides (panel).\(^5\) As suggested by previous studies, our model was able to corroborate that this association is non-linear\(^6\) and time-lagged.\(^6\) Therefore, by contrast with others\(^7\) who have described a linear increase between unemployment and suicide rate, the level of the unemployment rate has to be taken into account. The effect of a change in unemployment on suicide is stronger in countries with a lower rather than with a higher precrisis unemployment rate.

www.thelancet.com/psychiatry Published online February 11, 2015 http://dx.doi.org/10.1016/S2215-0366(14)00118-7 5

Table 3: Estimated suicide numbers and rates—total and those associated with unemployment (final model, overall)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>243,455</td>
<td>240,725</td>
<td>238,846</td>
<td>236,668</td>
<td>233,783</td>
<td>230,854</td>
<td>227,811</td>
<td>225,920</td>
<td>228,135</td>
<td>229,804</td>
<td>228,311</td>
<td>227,388</td>
</tr>
<tr>
<td></td>
<td>(228,822)</td>
<td>(226,452)</td>
<td>(224,838)</td>
<td>(222,872)</td>
<td>(227,405)</td>
<td>(224,356)</td>
<td>(221,236)</td>
<td>(222,956)</td>
<td>(224,625)</td>
<td>(226,183)</td>
<td>(224,604)</td>
<td>(223,570)</td>
</tr>
<tr>
<td></td>
<td>51,400</td>
<td>50,532</td>
<td>50,338</td>
<td>49,619</td>
<td>47,947</td>
<td>46,047</td>
<td>43,890</td>
<td>42,744</td>
<td>45,723</td>
<td>47,970</td>
<td>45,783</td>
<td>45,596</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rate per 100,000 population</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total suicides</td>
<td>17·49</td>
<td>17·11</td>
<td>16·80</td>
<td>16·48</td>
<td>16·11</td>
<td>15·74</td>
<td>15·39</td>
<td>15·11</td>
<td>15·12</td>
<td>15·10</td>
<td>14·87</td>
<td>14·66</td>
</tr>
<tr>
<td></td>
<td>(17·16–17·82)</td>
<td>(16·81–17·42)</td>
<td>(16·52–17·08)</td>
<td>(16·21–16·74)</td>
<td>(15·66–16·35)</td>
<td>(15·50–15·98)</td>
<td>(14·88–15·34)</td>
<td>(14·89–15·35)</td>
<td>(14·86–15·34)</td>
<td>(14·63–15·12)</td>
<td>(14·44–14·90)</td>
<td>(14·41–14·90)</td>
</tr>
<tr>
<td>Suicides associated with unemployment</td>
<td>3.53</td>
<td>3.44</td>
<td>3.40</td>
<td>3.32</td>
<td>3.18</td>
<td>3.02</td>
<td>2.85</td>
<td>2.75</td>
<td>2.92</td>
<td>3.03</td>
<td>2.93</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>(3.36–3.60)</td>
<td>(3.29–3.59)</td>
<td>(3.25–3.54)</td>
<td>(3.18–3.45)</td>
<td>(3.05–3.30)</td>
<td>(2.90–3.14)</td>
<td>(2.74–2.96)</td>
<td>(2.65–2.86)</td>
<td>(2.80–3.03)</td>
<td>(2.91–3.15)</td>
<td>(2.81–3.05)</td>
<td>(2.71–2.94)</td>
</tr>
</tbody>
</table>

Data are n (95% CI) or rate per 100,000 (95% CI).
countries where unemployment is uncommon, an unexpected increase in the unemployment rate might trigger greater fears and insecurity than in countries with higher precrisis unemployment rates. With respect to the time lag, our final model showed that the suicide rate increased 6 months before the rise in the unemployment rate. Corporate downsizing and labour market restructuring during economic contraction could create additional work stress and a sense of job insecurity among the employed (eg, through an increasing work-load, change to part-time employment, or intermittent lay-offs), which might contribute to poor mental health. Besides such circumstances, however, particularly vulnerable individuals have an increased risk of dying by suicide.

We did not find a lower effect size of unemployment in the 65 years and older age group in any of the four world regions. Retired individuals might also be affected by changes in unemployment—eg, when their offspring are or become unemployed. Accordingly, job loss can affect the risk of suicide of other household or family members as well. By contrast with our results, other studies have reported that men are more affected by unemployment than are women. One main reason for this reported difference could be separate analyses for men and women. To maintain statistical power and to directly assess sex and age differences, we preferred to construct a joint model.

Our study has several limitations. Apart from problems with the definition of and measurement of unemployment, we hold the unemployment rate as a broad indicator of the level of economic stress and uncertainty faced by the whole population. Because of restricted availability, we could not control for age-specific and sex-specific unemployment rates. Even if there were differences in total suicide rates between world regions, which we accounted for, there are numerous unconsidered and difficult to obtain clinical and psychosocial factors associated with suicide. Without question, it is impossible that an analysis on a world region level can be interpreted causally in a narrow sense. Further, because of missing data, the Asian (eg, China and India) and also African countries included in this study are not representative. Therefore, suicide numbers and rates might be underestimated. As our applied model belongs to the group of random coefficient models, we assumed subgroup intercepts to be uncorrelated with predictors, thus effects could be overestimated because of unobserved heterogeneity.

Corresponding with our results, other investigators have estimated excess suicide numbers of about 5000 cases associated with the economic crisis of 2008. Looking at our estimated suicide rates associated with unemployment, they had nearly reached pre-crisis level in 2011. Further, focusing on excess suicide alone leads to an underestimation of suicides. As we identified out from our statistical model, besides the additional 5000 cases, a nine-fold higher number of suicides (roughly 46 000) in 2009 can be associated with unemployment when considering all the years from 2000 to 2011 (figure 1).

Despite certain minor differences between world regions, the relative risk of suicide associated with unemployment remained quite similar between world regions and with time. This finding means that there is a continuous need to focus on preventing suicides, even more so in economically prosperous, stable time periods than in times of lower prosperity, when resources are scarcer. These efforts are necessary and valuable not only in countries with high, but also in those with low, unemployment rates. In particular, the interaction of fiscal austerity with economic shocks and weak social protection seems to escalate health and social crises, at least in Europe. Sufficient investment of governments in active labour market policies that enhance the efficiency of labour markets can reduce the unemployment rate and therefore help to generate additional jobs.

Efforts at suicide prevention should be extended to professionals working with individuals at risk of unemployment, such as social workers and human resource management professionals. These professional groups should be informed about the specific risk and trained concerning the practical assessment of suicidality and possible interventions. Further, general programmes in medical education should support physicians to recognise, diagnose, and treat patients with depressions, thus leading to reductions in suicide. This also requires the particular attention of primary physicians to patients who are unemployed or at risk of job loss.

Contributors CN compiled the data, designed and did the empirical analysis, and drafted the report. FW facilitated the interpretation of the findings, drafted the report, provided background information, and reviewed the report.
literature. WK oversaw the design of the study. WK and ES facilitated the interpretation of the findings, provided background information, and critically revised the manuscript for important intellectual content. All authors have seen and approved the final version of the report. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Declaration of interests
We declare no competing interests.

Acknowledgments
We thank Konstantinos N Fountoulakis for his important comments on preliminary versions of the report and Heather Murray for language editing.

References
Suicide, unemployment, and the effect of economic recession

WHO recently estimated that 804 000 people worldwide died by suicide during 2012.1 Suicide prevention experts have historically focused their attention on elevated risk during times of economic downturn. For instance, Stack and Haas estimated that more than 900 suicides in the USA were attributable to the sharp rise in redundancies that occurred in 1981–82 during the early years of the Reagan administration, and which pushed the national unemployment rate up to its highest level since the interwar Great Depression era.2 More recently, adverse effects linked with the 2008 economic crisis have also been reported. For example, Barr and colleagues reported that geographical regions in England with the greatest increases in levels of unemployment have also seen the largest rises in suicide risk, especially so for men.3

In The Lancet Psychiatry, Carlos Nordt and colleagues4 report on their longitudinal analyses of suicide risk across 63 countries during years 2000–11. This paper builds on previous work examining data from 54 countries that was published from the same WHO mortality dataset.5 What is novel about the current paper is its longitudinal modelling of the international effect of unemployment at population level across a period that encompasses economic stability as well as the crisis and its aftermath. This approach has enabled the authors to estimate the number of excess suicides attributable to unemployment per se, as well as the number specifically attributable to the recession and its wake. The nine-fold difference between these two values is striking. It implies that national and international suicide prevention strategies need to target the ill effects associated with unemployment in times of economic stability as well as during recession. The paper also highlights the fact that not all job losses necessarily have an equivalent effect, because the effect on suicide risk could be greatest in settings where being without work is fairly unusual.

Nordt and colleagues have correctly highlighted missing information from large and populous countries such as China and India, as well as most of the African continent, as the key limitation of the WHO mortality dataset that they examined.6 Another major restriction, one the authors did not address, is that examining fluctuating unemployment levels encompasses merely a fraction of complete societal exposure to the effects of economic recession and subsequent periods of public spending cuts and fiscal austerity.6 Thus, many affected individuals who remain in work during these hard times encounter serious psychological stressors due to pernicious economic strains other than unemployment, including falling income, ‘zero-hour’ contracting, job insecurity, bankruptcy, debt, and home repossession.7 Caution should therefore be exercised when considering estimated numbers of additional suicide cases attributable to global economic downturn, because they may represent a substantial undercount. The Trussell Trust, a charity that organises many of the food banks that have proliferated across the UK in recent years, reported in 2014 a steep rise in demand for their services. This increase in demand might seem surprising because the country has formally been in a period of economic recovery for some time. The Trust’s most recent figures indicate that low income is the fastest growing reason for referral to their services.8

Further research is needed to understand these complex relationships from broader perspectives. For example, little is known about how individual-level and area-level unemployment could interact to affect risk. We need to discern whether psychological problems and suicide risk are greatest for jobless individuals living in localities with high unemployment rates, or whether the effect of being out of work is more profound for those living in places where unemployment is relatively uncommon. This type of information could have important policy implications. It might be unwise, for example, to focus preventive initiatives solely on so-called unemployment hotspots, because unemployed individuals with increased suicide risk could be distributed across a far greater geographical spread. We also need to understand who is at greatest risk—previous studies have suggested that young people might be particularly vulnerable,5,7 but this was not borne out in the current analysis.

Nordt and colleagues report excess suicide cases of around 5000 attributable to increases in unemployment since the global recession from 2008 onwards.4 However, fatalities are bound to represent merely the tip of the iceberg. Therefore, we also require a better understanding of other psychosocial manifestations
of economic adversity, including non-fatal self-harm, stress and anxiety, low mood, hopelessness, alcohol problems, anger, familial conflict, and relationship breakdown. We also need to know how and why highly resilient individuals who experience the greatest levels of economic adversity manage to sustain favourable mental health and wellbeing.9

Roger T Webb*, Navneet Kapur
Centre for Mental Health and Risk (RTW, NK), and Centre for Suicide Prevention (NK), University of Manchester, Manchester M13 9PL, UK
roger.webb@manchester.ac.uk

RW declares no competing interests. NK is co-principal investigator on an National Institute for Health Research funded Programme Grant (RP-PG-0610-10026), one component of which will examine the effect of the 2008 recession on suicidal behaviour in England with a view to developing interventions (lead, D J Gunnell). NK is also a member of the Department of Health’s (England) National Suicide Prevention Strategy Advisory Group. The views expressed are those of the authors and not necessarily those of the National Health Service, the National Institute of Health and Research, or the Department of Health.